Accuracy of on-site teleoperated milling with haptic assistance

Author:

Drobinsky SergeyORCID,de la Fuente Matías,Puladi Behrus,Radermacher Klaus

Abstract

Abstract Purpose In bone surgery specialties, like orthopedics, neurosurgery, and oral and maxillofacial surgery patient safety and treatment success depends on the accurate implementation of computer-based surgical plans. Unintentional plan deviations can result in long-term functional damage to the patient. With on-site teleoperation, the surgeon operates a slave robot with a physically-decoupled master device, while being directly present at the operation site. This allows the surgeon to perform surgical tasks with robotic accuracy, while always remaining in the control loop. Methods In this study the master- and slave-side accuracy of an on-site teleoperated miniature cooperative robot (minaroHD) is evaluated. Master-side accuracy is investigated in a user study regarding scale factor, target feed rate, movement direction and haptic guidance stiffness. Scale factors are chosen to correspond to primarily finger, hand, and arm movements. Slave-side accuracy is investigated in autonomous milling trials regarding stepover, feed rate, movement direction, and material density. Results Master-side user input errors increase with increasing target feed rate and scale factor, and decrease with increasing haptic guidance stiffness. Resulting slave-side errors decrease with increasing scale factor and are < 0.07 mm for optimal guidance parameters. Slave-side robot position errors correlate with the feed rate but show little correlation with stepover distance. For optimal milling parameters, the 95th percentile of tracked slave-side position error is 0.086 mm with a maximal error of 0.16 mm. Conclusion For optimal guidance and milling parameters, the combined error of 0.23 mm is in the range of the dura mater thickness (< 0.27 mm) or mandibular canal wall (~ 0.85 mm). This corresponds to safety margins in high-demand surgical procedures like craniotomies, laminectomies, or decortication of the jaw. However, for further clinical translation, the performance and usability of on-site teleoperated milling must be further evaluated for real-life clinical application examples with consideration of all error sources in a computer-assisted surgery workflow.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3