Ultrasound segmentation analysis via distinct and completed anatomical borders

Author:

Duque Vanessa GonzalezORCID,Marquardt Alexandra,Velikova Yordanka,Lacourpaille Lilian,Nordez Antoine,Crouzier Marion,Lee Hong Joo,Mateus Diana,Navab Nassir

Abstract

Abstract Purpose Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries. In this paper, we present a new approach that analyzes ultrasound segmentation networks in terms of learned borders because border delimitation is challenging in ultrasound. Methods We propose a way to split the boundaries for ultrasound images into distinct and completed. By exploiting the Grad-CAM of the split borders, we analyze the areas each network pays attention to. Further, we calculate the ratio of correct predictions for distinct and completed borders. We conducted experiments on an in-house leg ultrasound dataset (LEG-3D-US) as well as on two additional public datasets of thyroid, nerves, and one private for prostate. Results Quantitatively, the networks exhibit around 10% improvement in handling completed borders compared to distinct borders. Similar to doctors, the network struggles to define the borders in less visible areas. Additionally, the Seg-Grad-CAM analysis underscores how completion uses distinct borders and landmarks, while distinct focuses mainly on the shiny structures. We also observe variations depending on the attention mechanism of each architecture. Conclusion In this work, we highlight the importance of studying ultrasound borders differently than other modalities such as MRI or CT. We split the borders into distinct and completed, similar to clinicians, and show the quality of the network-learned information for these two types of borders. Additionally, we open-source a 3D leg ultrasound dataset to the community https://github.com/Al3xand1a/segmentation-border-analysis.

Funder

Milcom Funding

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3