Abstract
Abstract
Purpose
In Talbot–Lau X-ray phase contrast imaging, the measured phase value depends on the position of the object in the measurement setup. When imaging large objects, this may lead to inhomogeneous phase contributions within the object. These inhomogeneities introduce artifacts in tomographic reconstructions of the object.
Methods
In this work, we compare recently proposed approaches to correct such reconstruction artifacts. We compare an iterative reconstruction algorithm, a known operator network and a U-net. The methods are qualitatively and quantitatively compared on the Shepp–Logan phantom and on the anatomy of a human abdomen. We also perform a dedicated experiment on the noise behavior of the methods.
Results
All methods were able to reduce the specific artifacts in the reconstructions for the simulated and virtual real anatomy data. The results show method-specific residual errors that are indicative for the inherently different correction approaches. While all methods were able to correct the artifacts, we report a different noise behavior.
Conclusion
The iterative reconstruction performs very well, but at the cost of a high runtime. The known operator network shows consistently a very competitive performance. The U-net performs slightly worse, but has the benefit that it is a general-purpose network that does not require special application knowledge.
Funder
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering