Comparative evaluation of three commercially available markerless depth sensors for close-range use in surgical simulation

Author:

Burger LukasORCID,Sharan LalithORCID,Karl RogerORCID,Wang Christina,Karck Matthias,De Simone Raffaele,Wolf Ivo,Romano GabrieleORCID,Engelhardt SandyORCID

Abstract

Abstract Purpose Minimally invasive surgeries have restricted surgical ports, demanding a high skill level from the surgeon. Surgical simulation potentially reduces this steep learning curve and additionally provides quantitative feedback. Markerless depth sensors show great promise for quantification, but most such sensors are not designed for accurate reconstruction of complex anatomical forms in close-range. Methods This work compares three commercially available depth sensors, namely the Intel D405, D415, and the Stereolabs Zed-Mini in the range of 12–20 cm, for use in surgical simulation. Three environments are designed that closely mimic surgical simulation, comprising planar surfaces, rigid objects, and mitral valve models of silicone and realistic porcine tissue. The cameras are evaluated on Z-accuracy, temporal noise, fill rate, checker distance, point cloud comparisons, and visual inspection of surgical scenes, across several camera settings. Results The Intel cameras show sub-mm accuracy in most static environments. The D415 fails in reconstructing valve models, while the Zed-Mini provides lesser temporal noise and higher fill rate. The D405 could reconstruct anatomical structures like the mitral valve leaflet and a ring prosthesis, but performs poorly for reflective surfaces like surgical tools and thin structures like sutures. Conclusion If a high temporal resolution is needed and lower spatial resolution is acceptable, the Zed-Mini is the best choice, whereas the Intel D405 is the most suited for close-range applications. The D405 shows potential for applications like deformable registration of surfaces, but is not yet suitable for applications like real-time tool tracking or surgical skill assessment.

Funder

Deutsche Forschungsgemeinschaft

Klaus Tschira Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3