Path tracking control of a steerable catheter in transcatheter cardiology interventions

Author:

Zhang XiuORCID,Sridhar Aditya,Ha Xuan Thao,Mehdi Syed Zain,Fortuna Andrea,Magro Mattia,Peloso Angela,Bicchi Anna,Ourak Mouloud,Aliverti Andrea,Votta Emiliano,Vander Poorten Emmanuel,De Momi Elena

Abstract

Abstract Purpose Intracardiac transcatheter interventions allow for reducing trauma and hospitalization stays as compared to standard surgery. In the treatment of mitral regurgitation, the most widely adopted transcatheter approach consists in deploying a clip on the mitral valve leaflets by means of a catheter that is run through veins from a peripheral access to the left atrium. However, precise manipulation of the catheter from outside the body while copying with the path constraints imposed by the vessels remains challenging. Methods We proposed a path tracking control framework that provides adequate motion commands to the robotic steerable catheter for autonomous navigation through vascular lumens. The proposed work implements a catheter kinematic model featuring nonholonomic constraints. Relying on the real-time measurements from an electromagnetic sensor and a fiber Bragg grating sensor, a two-level feedback controller was designed to control the catheter. Results The proposed method was tested in a patient-specific vessel phantom. A median position error between the center line of the vessel and the catheter tip trajectory was found to be below 2 mm, with a maximum error below 3 mm. Statistical testing confirmed that the performance of the proposed method exhibited no significant difference in both free space and the contact region. Conclusion The preliminary in vitro studies presented in this paper showed promising accuracy in navigating the catheter within the vessel. The proposed approach enables autonomous control of a steerable catheter for transcatheter cardiology interventions without the request of calibrating the intuitive parameters or acquiring a training dataset.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3