Abstract
Abstract
Purpose
Up to date, there has been a lack of software infrastructure to connect 3D Slicer to any augmented reality (AR) device. This work describes a novel connection approach using Microsoft HoloLens 2 and OpenIGTLink, with a demonstration in pedicle screw placement planning.
Methods
We developed an AR application in Unity that is wirelessly rendered onto Microsoft HoloLens 2 using Holographic Remoting. Simultaneously, Unity connects to 3D Slicer using the OpenIGTLink communication protocol. Geometrical transform and image messages are transferred between both platforms in real time. Through the AR glasses, a user visualizes a patient’s computed tomography overlaid onto virtual 3D models showing anatomical structures. We technically evaluated the system by measuring message transference latency between the platforms. Its functionality was assessed in pedicle screw placement planning. Six volunteers planned pedicle screws' position and orientation with the AR system and on a 2D desktop planner. We compared the placement accuracy of each screw with both methods. Finally, we administered a questionnaire to all participants to assess their experience with the AR system.
Results
The latency in message exchange is sufficiently low to enable real-time communication between the platforms. The AR method was non-inferior to the 2D desktop planner, with a mean error of 2.1 ± 1.4 mm. Moreover, 98% of the screw placements performed with the AR system were successful, according to the Gertzbein–Robbins scale. The average questionnaire outcomes were 4.5/5.
Conclusions
Real-time communication between Microsoft HoloLens 2 and 3D Slicer is feasible and supports accurate planning for pedicle screw placement.
Funder
Ministerio de Ciencia, Innovación y Universidades
European Regional Development Fund
Horizon 2020 Framework Programme
TED
Universidad Carlos III
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Navigational Augmented Reality for Robotic Drilling;2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO);2024-05-20
2. 3D Slicer-AR-Bridge: 3D Slicer AR Connection for Medical Image Visualization and Interaction with AR-HMD;2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct);2023-10-16