“Image to patient” equal-resolution surface registration supported by a surface scanner: analysis of algorithm efficiency for computer-aided surgery

Author:

Świątek-Najwer EwelinaORCID,Majak MarcinORCID,Popek Michał,Żuk MagdalenaORCID

Abstract

Abstract Purpose The “image to patient” registration procedure is crucial for the accuracy of surgical instrument tracking relative to the medical image while computer-aided surgery. The main aim of this work was to create an equal-resolution surface registration algorithm (ERSR) and analyze its efficiency. Methods The ERSR algorithm provides two datasets with equal, high resolution and approximately corresponding points. The registered sets are obtained by projection of a user-designed rectangle(s)-shaped uniform clouds of points on DICOM and surface scanner datasets. The tests of the algorithm were performed on a phantom with titanium microscrews. We analyzed the influence of DICOM resolution on the effect of the ERSR algorithm and compared the ERSR to standard paired-points landmark transform registration. The methods of analysis were Target Registration Error, distance maps, and their histogram evaluation. Results The mean TRE in case of ERSR equaled 0.8 ± 0.3 mm (resolution A), 0.8 ± 0.5 mm (resolution B), and 1.0 ± 0.7 mm (resolution C). The mean values were at least 0.4 mm lower than in the case of landmark transform registration. The distance maps between the model achieved from the scanner and the CT-based model were analyzed by histogram. The frequency of the first bin in a histogram of the distance map for ERSR was about 0.6 for all three resolutions of DICOM dataset and three times higher than in the case of landmark transform registration. The results were statistically analyzed using the Wilcoxon signed-rank test (alpha = 0.05). Conclusion The tests proved a statistically significant higher efficiency of equal resolution surface registration related to the landmark transform algorithm. It was proven that the lower resolution of the CT DICOM dataset did not degrade the efficiency of the ERSR algorithm. We observed a significantly lower response to decreased resolution than in the case of paired-points landmark transform registration.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3