A cGAN-based network for depth estimation from bronchoscopic images

Author:

Guo LuORCID,Nahm Werner

Abstract

Abstract Purpose Depth estimation is the basis of 3D reconstruction of airway structure from 2D bronchoscopic scenes, which can be further used to develop a vision-based bronchoscopic navigation system. This work aims to improve the performance of depth estimation directly from bronchoscopic images by training a depth estimation network on both synthetic and real datasets. Methods We propose a cGAN-based network Bronchoscopic-Depth-GAN (BronchoDep-GAN) to estimate depth from bronchoscopic images by translating bronchoscopic images into depth maps. The network is trained in a supervised way learning from synthetic textured bronchoscopic image-depth pairs and virtual bronchoscopic image-depth pairs, and simultaneously, also in an unsupervised way learning from unpaired real bronchoscopic images and depth maps to adapt the model to real bronchoscopic scenes. Results Our method is tested on both synthetic data and real data. However, the tests on real data are only qualitative, as no ground truth is available. The results show that our network obtains better accuracy in all cases in estimating depth from bronchoscopic images compared to the well-known cGANs pix2pix. Conclusions Including virtual and real bronchoscopic images in the training phase of the depth estimation networks can improve depth estimation’s performance on both synthetic and real scenes. Further validation of this work is planned on 3D clinical phantoms. Based on the depth estimation results obtained in this work, the accuracy of locating bronchoscopes with corresponding pre-operative CTs will also be evaluated in comparison with the current clinical status.

Funder

Richard and Annemarie Wolf Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3