Challenges in multi-centric generalization: phase and step recognition in Roux-en-Y gastric bypass surgery

Author:

Lavanchy Joël L.ORCID,Ramesh Sanat,Dall’Alba Diego,Gonzalez Cristians,Fiorini Paolo,Müller-Stich Beat P.,Nett Philipp C.,Marescaux Jacques,Mutter Didier,Padoy Nicolas

Abstract

Abstract Purpose Most studies on surgical activity recognition utilizing artificial intelligence (AI) have focused mainly on recognizing one type of activity from small and mono-centric surgical video datasets. It remains speculative whether those models would generalize to other centers. Methods In this work, we introduce a large multi-centric multi-activity dataset consisting of 140 surgical videos (MultiBypass140) of laparoscopic Roux-en-Y gastric bypass (LRYGB) surgeries performed at two medical centers, i.e., the University Hospital of Strasbourg, France (StrasBypass70) and Inselspital, Bern University Hospital, Switzerland (BernBypass70). The dataset has been fully annotated with phases and steps by two board-certified surgeons. Furthermore, we assess the generalizability and benchmark different deep learning models for the task of phase and step recognition in 7 experimental studies: (1) Training and evaluation on BernBypass70; (2) Training and evaluation on StrasBypass70; (3) Training and evaluation on the joint MultiBypass140 dataset; (4) Training on BernBypass70, evaluation on StrasBypass70; (5) Training on StrasBypass70, evaluation on BernBypass70; Training on MultiBypass140, (6) evaluation on BernBypass70 and (7) evaluation on StrasBypass70. Results The model’s performance is markedly influenced by the training data. The worst results were obtained in experiments (4) and (5) confirming the limited generalization capabilities of models trained on mono-centric data. The use of multi-centric training data, experiments (6) and (7), improves the generalization capabilities of the models, bringing them beyond the level of independent mono-centric training and validation (experiments (1) and (2)). Conclusion MultiBypass140 shows considerable variation in surgical technique and workflow of LRYGB procedures between centers. Therefore, generalization experiments demonstrate a remarkable difference in model performance. These results highlight the importance of multi-centric datasets for AI model generalization to account for variance in surgical technique and workflows. The dataset and code are publicly available at https://github.com/CAMMA-public/MultiBypass140.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Novartis Stiftung für Medizinisch-Biologische Forschung

Horizon 2020 Framework Programme

Academie Nationale de la Recherche

University of Basel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3