Toward automatic C-arm positioning for standard projections in orthopedic surgery

Author:

Kausch LisaORCID,Thomas Sarina,Kunze Holger,Privalov Maxim,Vetter Sven,Franke Jochen,Mahnken Andreas H.,Maier-Hein Lena,Maier-Hein Klaus

Abstract

Abstract Purpose Guidance and quality control in orthopedic surgery increasingly rely on intra-operative fluoroscopy using a mobile C-arm. The accurate acquisition of standardized and anatomy-specific projections is essential in this process. The corresponding iterative positioning of the C-arm is error prone and involves repeated manual acquisitions or even continuous fluoroscopy. To reduce time and radiation exposure for patients and clinical staff and to avoid errors in fracture reduction or implant placement, we aim at guiding—and in the long-run automating—this procedure. Methods In contrast to the state of the art, we tackle this inherently ill-posed problem without requiring patient-individual prior information like preoperative computed tomography (CT) scans, without the need of registration and without requiring additional technical equipment besides the projection images themselves. We propose learning the necessary anatomical hints for efficient C-arm positioning from in silico simulations, leveraging masses of 3D CTs. Specifically, we propose a convolutional neural network regression model that predicts 5 degrees of freedom pose updates directly from a first X-ray image. The method is generalizable to different anatomical regions and standard projections. Results Quantitative and qualitative validation was performed for two clinical applications involving two highly dissimilar anatomies, namely the lumbar spine and the proximal femur. Starting from one initial projection, the mean absolute pose error to the desired standard pose is iteratively reduced across different anatomy-specific standard projections. Acquisitions of both hip joints on 4 cadavers allowed for an evaluation on clinical data, demonstrating that the approach generalizes without retraining. Conclusion Overall, the results suggest the feasibility of an efficient deep learning-based automated positioning procedure, which is trained on simulations. Our proposed 2-stage approach for C-arm positioning significantly improves accuracy on synthetic images. In addition, we demonstrated that learning based on simulations translates to acceptable performance on real X-rays.

Funder

Siemens Healthineers

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3