Agreement between rhinomanometry and computed tomography-based computational fluid dynamics

Author:

Berger ManuelORCID,Giotakis Aris I.ORCID,Pillei MartinORCID,Mehrle Andreas,Kraxner Michael,Kral Florian,Recheis WolfgangORCID,Riechelmann HerbertORCID,Freysinger WolfgangORCID

Abstract

Abstract Purpose Active anterior rhinomanometry (AAR) and computed tomography (CT) are standardized methods for the evaluation of nasal obstruction. Recent attempts to correlate AAR with CT-based computational fluid dynamics (CFD) have been controversial. We aimed to investigate this correlation and agreement based on an in-house developed procedure. Methods In a pilot study, we retrospectively examined five subjects scheduled for septoplasty, along with preoperative digital volume tomography and AAR. The simulation was performed with Sailfish CFD, a lattice Boltzmann code. We examined the correlation and agreement of pressure derived from AAR (RhinoPress) and simulation (SimPress) and these of resistance during inspiration by 150 Pa pressure drop derived from AAR (RhinoRes150) and simulation (SimRes150). For investigation of correlation between pressures and between resistances, a univariate analysis of variance and a Pearson’s correlation were performed, respectively. For investigation of agreement, the Bland–Altman method was used. Results The correlation coefficient between RhinoPress and SimPress was r = 0.93 (p < 0.001). RhinoPress was similar to SimPress in the less obstructed nasal side and two times greater than SimPress in the more obstructed nasal side. A moderate correlation was found between RhinoRes150 and SimRes150 (r = 0.65; p = 0.041). Conclusion The simulation of rhinomanometry pressure by CT-based CFD seems more feasible with the lattice Boltzmann code in the less obstructed nasal side. In the more obstructed nasal side, error rates of up to 100% were encountered. Our results imply that the pressure and resistance derived from CT-based CFD and AAR were similar, yet not same.

Funder

Medizinische Universität Innsbruck

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Reference24 articles.

1. Scadding G, Hellings P, Alobid I, Bachert C, Fokkens W, van Wijk RG, Gevaert P, Guilemany J, Kalogjera L, Lund V, Mullol J, Passalacqua G, Toskala E, van Drunen C (2011) Diagnostic tools in Rhinology EAACI position paper. Clin Transl Allergy 1(1):2. https://doi.org/10.1186/2045-7022-1-2

2. Clement PA (1984) Committee report on standardization of rhinomanometry. Rhinology 22(3):151–155

3. Hasegawa M, Kern EB (1978) Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1):19–29

4. Eccles R (2000) Nasal airflow in health and disease. Acta Otolaryngol 120(5):580–595. https://doi.org/10.1080/000164800750000388

5. Kayser R (1895) Die exacte messung der luftdurchgangigkeit der nase. Arch Laryngol 94:149–156

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3