Occlusion-robust scene flow-based tissue deformation recovery incorporating a mesh optimization model

Author:

Chen Jiahe,Hara Kazuaki,Kobayashi Etsuko,Sakuma Ichiro,Tomii NaokiORCID

Abstract

Abstract Purpose Tissue deformation recovery is to reconstruct the change in shape and surface strain caused by tool-tissue interaction or respiration, which is essential for providing motion and shape information that benefits the improvement of the safety of minimally invasive surgery. The binocular vision-based approach is a practical candidate for deformation recovery as no extra devices are required. However, previous methods suffer from limitations such as the reliance on biomechanical priors and the vulnerability to the occlusion caused by surgical instruments. To address the issues, we propose a deformation recovery method incorporating mesh structures and scene flow. Methods The method can be divided into three modules. The first one is the implementation of the two-step scene flow generation module to extract the 3D motion from the binocular sequence. Second, we propose a strain-based filtering method to denoise the original scene flow. Third, a mesh optimization model is proposed that strengthens the robustness to occlusion by employing contextual connectivity. Results In a phantom and an in vivo experiment, the feasibility of the method in recovering surface deformation in the presence of tool-induced occlusion was demonstrated. Surface reconstruction accuracy was quantitatively evaluated by comparing the recovered mesh surface with the 3D scanned model in the phantom experiment. Results show that the overall error is 0.70 ± 0.55 mm. Conclusion The method has been demonstrated to be capable of continuously recovering surface deformation using mesh representation with robustness to the occlusion caused by surgical forceps and promises to be suitable for the application in actual surgery.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tissue histology on the correlation between fracture energy and elasticity;International Journal of Computer Assisted Radiology and Surgery;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3