Robust fetoscopic mosaicking from deep learned flow fields

Author:

Alabi OluwatosinORCID,Bano SophiaORCID,Vasconcelos Francisco,David Anna L.,Deprest Jan,Stoyanov Danail

Abstract

Abstract Purpose Fetoscopic laser photocoagulation is a minimally invasive procedure to treat twin-to-twin transfusion syndrome during pregnancy by stopping irregular blood flow in the placenta. Building an image mosaic of the placenta and its network of vessels could assist surgeons to navigate in the challenging fetoscopic environment during the procedure. Methodology We propose a fetoscopic mosaicking approach by combining deep learning-based optical flow with robust estimation for filtering inconsistent motions that occurs due to floating particles and specularities. While the current state of the art for fetoscopic mosaicking relies on clearly visible vessels for registration, our approach overcomes this limitation by considering the motion of all consistent pixels within consecutive frames. We also overcome the challenges in applying off-the-shelf optical flow to fetoscopic mosaicking through the use of robust estimation and local refinement. Results We compare our proposed method against the state-of-the-art vessel-based and optical flow-based image registration methods, and robust estimation alternatives. We also compare our proposed pipeline using different optical flow and robust estimation alternatives. Conclusions Through analysis of our results, we show that our method outperforms both the vessel-based state of the art and LK, noticeably when vessels are either poorly visible or too thin to be reliably identified. Our approach is thus able to build consistent placental vessel mosaics in challenging cases where currently available alternatives fail.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Petroleum Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3