Abstract
Abstract
Objectives
Fast volumetric ultrasound presents an interesting modality for continuous and real-time intra-fractional target tracking in radiation therapy of lesions in the abdomen. However, the placement of the ultrasound probe close to the target structures leads to blocking some beam directions.
Methods
To handle the combinatorial complexity of searching for the ultrasound-robot pose and the subset of optimal treatment beams, we combine CNN-based candidate beam selection with simulated annealing for setup optimization of the ultrasound robot, and linear optimization for treatment plan optimization into an AI-based approach. For 50 prostate cases previously treated with the CyberKnife, we study setup and treatment plan optimization when including robotic ultrasound guidance.
Results
The CNN-based search substantially outperforms previous randomized heuristics, increasing coverage from 93.66 to 97.20% on average. Moreover, in some cases the total MU was also reduced, particularly for smaller target volumes. Results after AI-based optimization are similar for treatment plans with and without beam blocking due to ultrasound guidance.
Conclusions
AI-based optimization allows for fast and effective search for configurations for robotic ultrasound-guided radiation therapy. The negative impact of the ultrasound robot on the plan quality can successfully be mitigated resulting only in minor differences.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献