A semi-automatic seed point-based method for separation of individual vertebrae in 3D surface meshes: a proof of principle study

Author:

Pijpker Peter A. J.ORCID,Oosterhuis Tim S.,Witjes Max J. H.,Faber Chris,van Ooijen Peter M. A.,Kosinka Jiří,Kuijlen Jos M. A.,Groen Rob J. M.,Kraeima Joep

Abstract

Abstract Purpose The purpose of this paper is to present and validate a new semi-automated 3D surface mesh segmentation approach that optimizes the laborious individual human vertebrae separation in the spinal virtual surgical planning workflow and make a direct accuracy and segmentation time comparison with current standard segmentation method. Methods The proposed semi-automatic method uses the 3D bone surface derived from CT image data for seed point-based 3D mesh partitioning. The accuracy of the proposed method was evaluated on a representative patient dataset. In addition, the influence of the number of used seed points was studied. The investigators analyzed whether there was a reduction in segmentation time when compared to manual segmentation. Surface-to-surface accuracy measurements were applied to assess the concordance with the manual segmentation. Results The results demonstrated a statically significant reduction in segmentation time, while maintaining a high accuracy compared to the manual segmentation. A considerably smaller error was found when increasing the number of seed points. Anatomical regions that include articulating areas tend to show the highest errors, while the posterior laminar surface yielded an almost negligible error. Conclusion A novel seed point initiated surface based segmentation method for the laborious individual human vertebrae separation was presented. This proof-of-principle study demonstrated the accuracy of the proposed method on a clinical CT image dataset and its feasibility for spinal virtual surgical planning applications.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3