Usability of cooperative surgical telemanipulation for bone milling tasks

Author:

Schleer PhilippORCID,Vossel Manuel,Heckmann Lotte,Drobinsky Sergey,Theisgen Lukas,de la Fuente Matías,Radermacher Klaus

Abstract

Abstract Purpose Cooperative surgical systems enable humans and machines to combine their individual strengths and collaborate to improve the surgical outcome. Cooperative telemanipulated systems offer the widest spectrum of cooperative functionalities, because motion scaling is possible. Haptic guidance can be used to assist surgeons and haptic feedback makes acting forces at the slave side transparent to the operator, however, overlapping and masking of forces needs to be avoided. This study evaluates the usability of a cooperative surgical telemanipulator in a laboratory setting. Methods Three experiments were designed and conducted for characteristic surgical task scenarios derived from field studies in orthopedics and neurosurgery to address bone tissue differentiation, guided milling and depth sensitive milling. Interaction modes were designed to ensure that no overlapping or masking of haptic guidance and haptic feedback occurs when allocating information to the haptic channel. Twenty participants were recruited to compare teleoperated modes, direct manual execution and an exemplary automated milling with respect to usability. Results Participants were able to differentiate compact and cancellous bone, both directly manually and teleoperatively. Both telemanipulated modes increased effectiveness measured by the mean absolute depth and contour error for guided and depth sensitive millings. Efficiency is decreased if solely a boundary constraint is used in hard material, while a trajectory guidance and manual milling perform similarly. With respect to subjective user satisfaction trajectory guidance is rated best for guided millings followed by boundary constraints and the direct manual interaction. Haptic feedback only improved subjective user satisfaction. Conclusion A cooperative surgical telemanipulator can improve effectiveness and efficiency close to an automated execution and enhance user satisfaction compared to direct manual interaction. At the same time, the surgeon remains part of the control loop and is able to adjust the surgical plan according to the intraoperative situation and his/her expertise at any time.

Funder

RWTH Aachen

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3