Abstract
Abstract
Purpose
Little is known about the in vivo forces and stresses on grafts used in anterior cruciate ligament (ACL) reconstruction. The aims of this study were to evaluate and compare the forces and stresses on grafts used in anatomical single-bundle ACL reconstruction at different locations of the femoral footprint (anterior vs middle vs posterior; high vs middle vs low) during a lunge motion.
Methods
Establish subject-specific finite element models with different graft’s tunnel loci to represent the primary ACL reconstructions. A displacement controlled finite element method was used to simulate lunge motions (full extension to ~ 100° of flexion) with six-degree-of-freedom knee kinematics data obtained from the validated dual fluoroscopic imaging techniques. The reaction force of the femur and maximal principal stresses of the grafts were subsequently calculated during knee flexion.
Results
Increased and decreased graft forces were observed when the grafts were located higher and lower on the femoral footprint, respectively; anterior and posterior graft placement did not significantly affect the graft force. Lower and posterior graft placement resulted in less stress on the graft at higher degrees of flexion; there were no significant differences in stress when the grafts were placed from 0° to 30° of flexion on the femoral footprint.
Conclusion
The proposed method is able to simulate knee joint motion based on in vivo kinematics. The results demonstrate that posterior to the centre of the femoral footprint is the strategic location for graft placement, and this placement results in anatomical graft behaviour with a low stress state.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献