Learned optical flow for intra-operative tracking of the retinal fundus

Author:

Ravasio Claudio S.,Pissas Theodoros,Bloch Edward,Flores Blanca,Jalali Sepehr,Stoyanov Danail,Cardoso Jorge M.,Da Cruz Lyndon,Bergeles Christos

Abstract

Abstract Purpose Sustained delivery of regenerative retinal therapies by robotic systems requires intra-operative tracking of the retinal fundus. We propose a supervised deep convolutional neural network to densely predict semantic segmentation and optical flow of the retina as mutually supportive tasks, implicitly inpainting retinal flow information missing due to occlusion by surgical tools. Methods As manual annotation of optical flow is infeasible, we propose a flexible algorithm for generation of large synthetic training datasets on the basis of given intra-operative retinal images. We evaluate optical flow estimation by tracking a grid and sparsely annotated ground truth points on a benchmark of challenging real intra-operative clips obtained from an extensive internally acquired dataset encompassing representative vitreoretinal surgical cases. Results The U-Net-based network trained on the synthetic dataset is shown to generalise well to the benchmark of real surgical videos. When used to track retinal points of interest, our flow estimation outperforms variational baseline methods on clips containing tool motions which occlude the points of interest, as is routinely observed in intra-operatively recorded surgery videos. Conclusions The results indicate that complex synthetic training datasets can be used to specifically guide optical flow estimation. Our proposed algorithm therefore lays the foundation for a robust system which can assist with intra-operative tracking of moving surgical targets even when occluded.

Funder

National Institute for Health Research

European Research Council

The Michael Uren Foundation

Engineering and Physical Sciences Research Council

RAEng Chair

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NerveStitcher2.0: Evolution of Stitching Algorithm for Corneal Confocal Microscope Images with Optical Flow;Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing;2023-10-20

2. Motion Decoupling Network for Intra-Operative Motion Estimation Under Occlusion;IEEE Transactions on Medical Imaging;2023-10

3. Exploring the future of surgical practices;International journal of health sciences;2023-01-15

4. Robot-Assisted Minimally Invasive Surgery—Surgical Robotics in the Data Age;Proceedings of the IEEE;2022-07

5. From Chairs To Brains: Customizing Optical Flow For Surgical Activity Localization;2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI);2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3