Contraction assessment of abdominal muscles using automated segmentation designed for wearable ultrasound applications

Author:

Strohm HannahORCID,Rothluebbers Sven,Perotti Luis,Stamm Oskar,Fournelle Marc,Jenne Juergen,Guenther Matthias

Abstract

Abstract Purpose Wearable ultrasound devices can be used to continuously monitor muscle activity. One possible application is to provide real-time feedback during physiotherapy, to show a patient whether an exercise is performed correctly. Algorithms which automatically analyze the data can be of importance to overcome the need for manual assessment and annotations and speed up evaluations especially when considering real-time video sequences. They even could be used to present feedback in an understandable manner to patients in a home-use scenario. The following work investigates three deep learning based segmentation approaches for abdominal muscles in ultrasound videos during a segmental stabilizing exercise. The segmentations are used to automatically classify the contraction state of the muscles. Methods The first approach employs a simple 2D network, while the remaining two integrate the time information from the videos either via additional tracking or directly into the network architecture. The contraction state is determined by comparing measures such as muscle thickness and center of mass between rest and exercise. A retrospective analysis is conducted but also a real-time scenario is simulated, where classification is performed during exercise. Results Using the proposed segmentation algorithms, 71% of the muscle states are classified correctly in the retrospective analysis in comparison to 90% accuracy with manual reference segmentation. For the real-time approach the majority of given feedback during exercise is correct when the retrospective analysis had come to the correct result, too. Conclusion Both retrospective and real-time analysis prove to be feasible. While no substantial differences between the algorithms were observed regarding classification, the networks incorporating the time information showed temporally more consistent segmentations. Limitations of the approaches as well as reasons for failing cases in segmentation, classification and real-time assessment are discussed and requirements regarding image quality and hardware design are derived.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3