Texture synthesis for generating realistic-looking bronchoscopic videos

Author:

Guo LuORCID,Nahm Werner

Abstract

Abstract Purpose Synthetic realistic-looking bronchoscopic videos are needed to develop and evaluate depth estimation methods as part of investigating vision-based bronchoscopic navigation system. To generate these synthetic videos under the circumstance where access to real bronchoscopic images/image sequences is limited, we need to create various realistic-looking image textures of the airway inner surface with large size using a small number of real bronchoscopic image texture patches. Methods A generative adversarial networks-based method is applied to create realistic-looking textures of the airway inner surface by learning from a limited number of small texture patches from real bronchoscopic images. By applying a purely convolutional architecture without any fully connected layers, this method allows the production of textures with arbitrary size. Results Authentic image textures of airway inner surface are created. An example of the synthesized textures and two frames of the thereby generated bronchoscopic video are shown. The necessity and sufficiency of the generated textures as image features for further depth estimation methods are demonstrated. Conclusions The method can generate textures of the airway inner surface that meet the requirements for the texture itself and for the thereby generated bronchoscopic videos, including “realistic-looking,” “long-term temporal consistency,” “sufficient image features for depth estimation,” and “large size and variety of synthesized textures.” Besides, it also shows advantages with respect to the easy accessibility to required data source. A further validation of this approach is planned by utilizing the realistic-looking bronchoscopic videos with textures generated by this method as training and test data for some depth estimation networks.

Funder

Richard and Annemarie Wolf Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Metrics and Dataset for Biological Development Video Generation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-03-20

2. Temporal Development GAN (TD-GAN): Crafting More Accurate Image Sequences of Biological Development;Information;2023-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3