Deep learning-based semantic vessel graph extraction for intracranial aneurysm rupture risk management

Author:

Niemann Annika,Behme Daniel,Larsen Naomi,Preim Bernhard,Saalfeld SylviaORCID

Abstract

Abstract Purpose Intracranial aneurysms are vascular deformations in the brain which are complicated to treat. In clinical routines, the risk assessment of intracranial aneurysm rupture is simplified and might be unreliable, especially for patients with multiple aneurysms. Clinical research proposed more advanced analysis of intracranial aneurysm, but requires many complex preprocessing steps. Advanced tools for automatic aneurysm analysis are needed to transfer current research into clinical routine. Methods We propose a pipeline for intracranial aneurysm analysis using deep learning-based mesh segmentation, automatic centerline and outlet detection and automatic generation of a semantic vessel graph. We use the semantic vessel graph for morphological analysis and an automatic rupture state classification. Results The deep learning-based mesh segmentation can be successfully applied to aneurysm surface meshes. With the subsequent semantic graph extraction, additional morphological parameters can be extracted that take the whole vascular domain into account. The vessels near ruptured aneurysms had a slightly higher average torsion and curvature compared to vessels near unruptured aneurysms. The 3D surface models can be further employed for rupture state classification which achieves an accuracy of 83.3%. Conclusion The presented pipeline addresses several aspects of current research and can be used for aneurysm analysis with minimal user effort. The semantic graph representation with automatic separation of the aneurysm from the parent vessel is advantageous for morphological and hemodynamical parameter extraction and has great potential for deep learning-based rupture state classification.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3