Abstract
Abstract
Purpose
Standardized uptake values (SUVs) derived from 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV.
Methods
The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demographic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation formula. We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors and compared them to the ROC curve of normal SUV.
Results
A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level, triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation.
Conclusion
The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption by tumors in the liver.
Publisher
Springer Science and Business Media LLC