Speed-of-sound imaging using diverging waves

Author:

Rau RichardORCID,Schweizer Dieter,Vishnevskiy Valery,Goksel Orcun

Abstract

Abstract Purpose. Due to its safe, low-cost, portable, and real-time nature, ultrasound is a prominent imaging method in computer-assisted interventions. However, typical B-mode ultrasound images have limited contrast and tissue differentiation capability for several clinical applications. Methods. Recent introduction of imaging speed-of-sound (SoS) in soft tissues using conventional ultrasound systems and transducers has great potential in clinical translation providing additional imaging contrast, e.g., in intervention planning, navigation, and guidance applications. However, current pulse-echo SoS imaging methods relying on plane wave (PW) sequences are highly prone to aberration effects, therefore suboptimal in image quality. In this paper we propose using diverging waves (DW) for SoS imaging and study this comparatively to PW. Results. We demonstrate wavefront aberration and its effects on the key step of displacement tracking in the SoS reconstruction pipeline, comparatively between PW and DW on a synthetic example. We then present the parameterization sensitivity of both approaches on a set of simulated phantoms. Analyzing SoS imaging performance comparatively indicates that using DW instead of PW, the reconstruction accuracy improves by over 20% in root-mean-square-error (RMSE) and by 42% in contrast-to-noise ratio (CNR). We then demonstrate SoS reconstructions with actual US acquisitions of a breast phantom. With our proposed DW, CNR for a high contrast tumor-representative inclusion is improved by 42%, while for a low contrast cyst-representative inclusion a 2.8-fold improvement is achieved. Conclusion. SoS imaging, so far only studied using a plane wave transmission scheme, can be made more reliable and accurate using DW. The high imaging contrast of DW-based SoS imaging will thus facilitate the clinical translation of the method and utilization in computer-assisted interventions such as ultrasound-guided biopsies, where B-Mode contrast is often to low to detect potential lesions.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3