An ex-vivo and in-vitro dynamic simulator for surgical and transcatheter mitral valve interventions
-
Published:2023-12-08
Issue:
Volume:
Page:
-
ISSN:1861-6429
-
Container-title:International Journal of Computer Assisted Radiology and Surgery
-
language:en
-
Short-container-title:Int J CARS
Author:
Karl RogerORCID, Romano GabrieleORCID, Marx Josephin, Eden Matthias, Schlegel Philipp, Stroh Lubov, Fischer Samantha, Hehl Maximilian, Kühle Reinald, Mohl Lukas, Karck Matthias, Frey Norbert, De Simone Raffaele, Engelhardt SandyORCID
Abstract
Abstract
Purpose
Minimally invasive mitral valve surgery (MIMVS) and transcatheter edge-to-edge repair (TEER) are complex procedures used to treat mitral valve (MV) pathologies, but with limited training opportunities available. To enable training, a realistic hemodynamic environment is needed. In this work we aimed to develop and validate a simulator that enables investigation of MV pathologies and their repair by MIMVS and TEER in a hemodynamic setting.
Methods
Different MVs were installed in the simulator, and pressure, flow, and transesophageal echocardiographic measurements were obtained. To confirm the simulator’s physiological range, we first installed a biological prosthetic, a mechanical prosthetic, and a competent excised porcine MV. Subsequently, we inserted two porcine MVs—one with induced chordae tendineae rupture and the other with a dilated annulus, along with a patient-specific silicone valve extracted from echocardiography with bi-leaflet prolapse. Finally, TEER and MIMVS procedures were conducted by experts to repair the MVs.
Results
Systolic pressures, cardiac outputs, and regurgitations volumes (RVol) with competent MVs were 119 ± 1 mmHg, 4.78 ± 0.16 l min−1, and 5 ± 3 ml respectively, and thus within the physiological range. In contrast, the pathological MVs displayed increased RVols. MIMVS and TEER resulted in a decrease in RVols and mitigated the severity of mitral regurgitation.
Conclusion
Ex-vivo modelling of MV pathologies and repair procedures using the described simulator realistically replicated physiological in-vivo conditions. Furthermore, we showed the feasibility of performing MIMVS and TEER at the simulator, also at patient-specific level, thus providing new clinical perspectives in terms of training modalities and personalized planning.
Funder
Klaus Tschira Stiftung
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Reference22 articles.
1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases: a population-based study. Lancet 368(9540):1005–1011. https://doi.org/10.1016/S0140-6736(06)69208-8 2. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, Capodanno D, Conradi L, de Bonis M, de Paulis R, Delgado V, Freemantle N, Gilard M, Haugaa KH, Jeppsson A, Jüni P, Pierard L, Prendergast BD, Sádaba JR, Tribouilloy C, Wojakowski W (2022) 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 43(7):561–632. https://doi.org/10.1093/eurheartj/ehab395 3. Chikwe J, Toyoda N, Anyanwu AC, Itagaki S, Egorova NN, Boateng P, El-Eshmawi A, Adams DH (2017) Relation of mitral valve surgery volume to repair rate, durability, and survival. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2017.02.026 4. Chhatriwalla AK, Vemulapalli S, Szerlip M, Kodali S, Hahn RT, Saxon JT, Mack MJ, Ailawadi G, Rymer J, Manandhar P, Kosinski AS, Sorajja P (2019) Operator experience and outcomes of transcatheter mitral valve repair in the United States. J Am Coll Cardiol 74(24):2955–2965. https://doi.org/10.1016/j.jacc.2019.09.014 5. Simkin DJ, Greene JA, Jung J, Sacks BC, Fessler HE (2017) The death of animals in medical school. N Engl J Med 376(8):713–715. https://doi.org/10.1056/NEJMp1612992
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|