Deep learning-based automatic pipeline for 3D needle localization on intra-procedural 3D MRI

Author:

Zhou WenqiORCID,Li Xinzhou,Zabihollahy Fatemeh,Lu David S.,Wu Holden H.ORCID

Abstract

Abstract Purpose Accurate and rapid needle localization on 3D magnetic resonance imaging (MRI) is critical for MRI-guided percutaneous interventions. The current workflow requires manual needle localization on 3D MRI, which is time-consuming and cumbersome. Automatic methods using 2D deep learning networks for needle segmentation require manual image plane localization, while 3D networks are challenged by the need for sufficient training datasets. This work aimed to develop an automatic deep learning-based pipeline for accurate and rapid 3D needle localization on in vivo intra-procedural 3D MRI using a limited training dataset. Methods The proposed automatic pipeline adopted Shifted Window (Swin) Transformers and employed a coarse-to-fine segmentation strategy: (1) initial 3D needle feature segmentation with 3D Swin UNEt TRansfomer (UNETR); (2) generation of a 2D reformatted image containing the needle feature; (3) fine 2D needle feature segmentation with 2D Swin Transformer and calculation of 3D needle tip position and axis orientation. Pre-training and data augmentation were performed to improve network training. The pipeline was evaluated via cross-validation with 49 in vivo intra-procedural 3D MR images from preclinical pig experiments. The needle tip and axis localization errors were compared with human intra-reader variation using the Wilcoxon signed rank test, with p < 0.05 considered significant. Results The average end-to-end computational time for the pipeline was 6 s per 3D volume. The median Dice scores of the 3D Swin UNETR and 2D Swin Transformer in the pipeline were 0.80 and 0.93, respectively. The median 3D needle tip and axis localization errors were 1.48 mm (1.09 pixels) and 0.98°, respectively. Needle tip localization errors were significantly smaller than human intra-reader variation (median 1.70 mm; p < 0.01). Conclusion The proposed automatic pipeline achieved rapid pixel-level 3D needle localization on intra-procedural 3D MRI without requiring a large 3D training dataset and has the potential to assist MRI-guided percutaneous interventions.

Funder

Siemens Medical Solutions USA

National Institute of Biomedical Imaging and Bioengineering

David Geffen School of Medicine, University of California, Los Angeles

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3