Segmentation of mediastinal lymph nodes in CT with anatomical priors

Author:

Mathai Tejas SudharshanORCID,Liu Bohan,Summers Ronald M.

Abstract

Abstract Purpose Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside outside of most organs. Methods We propose to segment LNs in the mediastinum by leveraging the anatomical priors of 28 different structures (e.g., lung, trachea etc.) generated by the public TotalSegmentator tool. The CT volumes from 89 patients available in the public NIH CT Lymph Node dataset were used to train three 3D off-the-shelf nnUNet models to segment LNs. The public St. Olavs dataset containing 15 patients (out-of-training-distribution) was used to evaluate the segmentation performance. Results For LNs with short axis diameter $$\ge $$ 8 mm, the 3D cascade nnUNet model obtained the highest Dice score of 67.9 ± 23.4 and lowest Hausdorff distance error of 22.8 ± 20.2. For LNs of all sizes, the Dice score was 58.7 ± 21.3 and this represented a $$\ge $$ 10% improvement over a recently published approach evaluated on the same test dataset. Conclusion To our knowledge, we are the first to harness 28 distinct anatomical priors to segment mediastinal LNs, and our work can be extended to other nodal zones in the body. The proposed method has the potential for improved patient outcomes through the identification of enlarged nodes in initial staging CT scans.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subcutaneous edema segmentation on abdominal CT using multi-class labels and iterative annotation;International Journal of Computer Assisted Radiology and Surgery;2024-09-14

2. Weakly supervised detection of pheochromocytomas and paragangliomas in CT using noisy data;Computerized Medical Imaging and Graphics;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3