6G in medical robotics: development of network allocation strategies for a telerobotic examination system

Author:

Kolb SvenORCID,Madden AndrewORCID,Kröger NicolaiORCID,Mehmeti FidanORCID,Jurosch FranziskaORCID,Bernhard LukasORCID,Kellerer WolfgangORCID,Wilhelm DirkORCID

Abstract

Abstract Purpose Healthcare systems around the world are increasingly facing severe challenges due to problems such as staff shortage, changing demographics and the reliance on an often strongly human-dependent environment. One approach aiming to address these issues is the development of new telemedicine applications. The currently researched network standard 6G promises to deliver many new features which could be beneficial to leverage the full potential of emerging telemedical solutions and overcome the limitations of current network standards. Methods We developed a telerobotic examination system with a distributed robot control infrastructure to investigate the benefits and challenges of distributed computing scenarios, such as fog computing, in medical applications. We investigate different software configurations for which we characterize the network traffic and computational loads and subsequently establish network allocation strategies for different types of modular application functions (MAFs). Results The results indicate a high variability in the usage profiles of these MAFs, both in terms of computational load and networking behavior, which in turn allows the development of allocation strategies for different types of MAFs according to their requirements. Furthermore, the results provide a strong basis for further exploration of distributed computing scenarios in medical robotics. Conclusion This work lays the foundation for the development of medical robotic applications using 6G network architectures and distributed computing scenarios, such as fog computing. In the future, we plan to investigate the capability to dynamically shift MAFs within the network based on current situational demand, which could help to further optimize the performance of network-based medical applications and play a role in addressing the increasingly critical challenges in healthcare.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3