A system for real-time multivariate feature combination of endoscopic mitral valve simulator training data

Author:

Fuchs ReinhardORCID,Van Praet Karel M.ORCID,Bieck RichardORCID,Kempfert Jörg,Holzhey DavidORCID,Kofler MarkusORCID,Borger Michael A.ORCID,Jacobs StephanORCID,Falk VolkmarORCID,Neumuth ThomasORCID

Abstract

Abstract Purpose For an in-depth analysis of the learning benefits that a stereoscopic view presents during endoscopic training, surgeons required a custom surgical evaluation system enabling simulator independent evaluation of endoscopic skills. Automated surgical skill assessment is in dire need since supervised training sessions and video analysis of recorded endoscope data are very time-consuming. This paper presents a first step towards a multimodal training evaluation system, which is not restricted to certain training setups and fixed evaluation metrics. Methods With our system we performed data fusion of motion and muscle-action measurements during multiple endoscopic exercises. The exercises were performed by medical experts with different surgical skill levels, using either two or three-dimensional endoscopic imaging. Based on the multi-modal measurements, training features were calculated and their significance assessed by distance and variance analysis. Finally, the features were used automatic classification of the used endoscope modes. Results During the study, 324 datasets from 12 participating volunteers were recorded, consisting of spatial information from the participants’ joint and right forearm electromyographic information. Feature significance analysis showed distinctive significance differences, with amplitude-related muscle information and velocity information from hand and wrist being among the most significant ones. The analyzed and generated classification models exceeded a correct prediction rate of used endoscope type accuracy rate of 90%. Conclusion The results support the validity of our setup and feature calculation, while their analysis shows significant distinctions and can be used to identify the used endoscopic view mode, something not apparent when analyzing time tables of each exercise attempt. The presented work is therefore a first step toward future developments, with which multivariate feature vectors can be classified automatically in real-time to evaluate endoscopic training and track learning progress.

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3