Minimal data requirement for realistic endoscopic image generation with Stable Diffusion

Author:

Kaleta Joanna,Dall’Alba DiegoORCID,Płotka Szymon,Korzeniowski Przemysław

Abstract

Abstract Purpose Computer-assisted surgical systems provide support information to the surgeon, which can improve the execution and overall outcome of the procedure. These systems are based on deep learning models that are trained on complex and challenging-to-annotate data. Generating synthetic data can overcome these limitations, but it is necessary to reduce the domain gap between real and synthetic data. Methods We propose a method for image-to-image translation based on a Stable Diffusion model, which generates realistic images starting from synthetic data. Compared to previous works, the proposed method is better suited for clinical application as it requires a much smaller amount of input data and allows finer control over the generation of details by introducing different variants of supporting control networks. Results The proposed method is applied in the context of laparoscopic cholecystectomy, using synthetic and real data from public datasets. It achieves a mean Intersection over Union of 69.76%, significantly improving the baseline results (69.76 vs. 42.21%). Conclusions The proposed method for translating synthetic images into images with realistic characteristics will enable the training of deep learning methods that can generalize optimally to real-world contexts, thereby improving computer-assisted intervention guidance systems.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Reference38 articles.

1. Binkowski M, Sutherland DJ, Arbel M, Gretton A (2018) Demystifying mmd gans. In: International conference on learning representations

2. Chen Y, Yang X-H, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q (2022) Generative adversarial networks in medical image augmentation: a review. Comput Biol Med 144:105382

3. Dhariwal P, Nichol A (2021) Diffusion models beat gans on image synthesis. Adv Neural Inf Process Syst 34:8780–8794

4. Dowrick T, Davidson B, Gurusamy K, Clarkson MJ (2022) Large scale simulation of labeled intraoperative scenes in unity. Int J Comput Assist Radiol Surg 17(5):961–963

5. Gal R, Alaluf Y, Atzmon Y, Patashnik O, Bermano AH, Chechik G, Cohen-Or D (2022) An image is worth one word: Personalizing text-to-image generation using textual inversion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3