Investigating exploration for deep reinforcement learning of concentric tube robot control

Author:

Iyengar KeshavORCID,Dwyer GeorgeORCID,Stoyanov DanailORCID

Abstract

Abstract Purpose Concentric tube robots are composed of multiple concentric, pre-curved, super-elastic, telescopic tubes that are compliant and have a small diameter suitable for interventions that must be minimally invasive like fetal surgery. Combinations of rotation and extension of the tubes can alter the robot’s shape but the inverse kinematics are complex to model due to the challenge of incorporating friction and other tube interactions or manufacturing imperfections. We propose a model-free reinforcement learning approach to form the inverse kinematics solution and directly obtain a control policy. Method Three exploration strategies are shown for deep deterministic policy gradient with hindsight experience replay for concentric tube robots in simulation environments. The aim is to overcome the joint to Cartesian sampling bias and be scalable with the number of robotic tubes. To compare strategies, evaluation of the trained policy network to selected Cartesian goals and associated errors are analyzed. The learned control policy is demonstrated with trajectory following tasks. Results Separation of extension and rotation joints for Gaussian exploration is required to overcome Cartesian sampling bias. Parameter noise and Ornstein–Uhlenbeck were found to be optimal strategies with less than 1 mm error in all simulation environments. Various trajectories can be followed with the optimal exploration strategy learned policy at high joint extension values. Our inverse kinematics solver in evaluation has 0.44 mm extension and $$0.3^{\circ }$$0.3 rotation error. Conclusion We demonstrate the feasibility of effective model-free control for concentric tube robots. Directly using the control policy, arbitrary trajectories can be followed and this is an important step towards overcoming the challenge of concentric tube robot control for clinical use in minimally invasive interventions.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Reference21 articles.

1. Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel OP, Zaremba W (2017) Hindsight experience replay. In: Advances in neural information processing systems, pp 5048–5058

2. Bergeles C, Lin FY, Yang GZ (2015) Concentric tube robot kinematics using neural networks. In: Hamlyn symposium on medical robotics, pp 13–14

3. Burgner J, Rucker DC, Gilbert HB, Swaney PJ, Russell PT, Weaver KD, Webster RJ (2014) A telerobotic system for transnasal surgery. IEEE/ASME Trans Mechatron 19(3):996–1006. https://doi.org/10.1109/TMECH.2013.2265804

4. Dupont P, Gosline A, Vasilyev N, Lock J, Butler E, Folk C, Cohen A, Chen R, Schmitz G RH, del Nido P (2012) Concentric tube robots for minimally invasive surgery. In: Hamlyn symposium on medical robotics, vol 7, p 8

5. Dupont PE, Lock J, Itkowitz B, Butler E (2010) Design and control of concentric-tube robots. IEEE Trans Robot 26(2):209–225. https://doi.org/10.1109/TRO.2009.2035740

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3