Toward a navigation framework for fetoscopy

Author:

Casella AlessandroORCID,Lena ChiaraORCID,Moccia Sara,Paladini Dario,De Momi Elena,Mattos Leonardo S.

Abstract

Abstract Purpose Fetoscopic laser photocoagulation of placental anastomoses is the most effective treatment for twin-to-twin transfusion syndrome (TTTS). A robust mosaic of placenta and its vascular network could support surgeons’ exploration of the placenta by enlarging the fetoscope field-of-view. In this work, we propose a learning-based framework for field-of-view expansion from intra-operative video frames. Methods While current state of the art for fetoscopic mosaicking builds upon the registration of anatomical landmarks which may not always be visible, our framework relies on learning-based features and keypoints, as well as robust transformer-based image-feature matching, without requiring any anatomical priors. We further address the problem of occlusion recovery and frame relocalization, relying on the computed features and their descriptors. Results Experiments were conducted on 10 in-vivo TTTS videos from two different fetal surgery centers. The proposed framework was compared with several state-of-the-art approaches, achieving higher $$\textrm{SSIM}_{5}$$ SSIM 5 on 7 out of 10 videos and a success rate of $$93.25\%$$ 93.25 % in occlusion recovery. Conclusion This work introduces a learning-based framework for placental mosaicking with occlusion recovery from intra-operative videos using a keypoint-based strategy and features. The proposed framework can compute the placental panorama and recover even in case of camera tracking loss where other methods fail. The results suggest that the proposed framework has large potential to pave the way to creating a surgical navigation system for TTTS by providing robust field-of-view expansion.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Real-Time Image Stitching Framework for Fetoscopic Field-of-View Expansion;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

2. Robot assisted Fetoscopic Laser Coagulation: Improvements in navigation, re-location and coagulation;Artificial Intelligence in Medicine;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3