Deep hashing for global registration of untracked 2D laparoscopic ultrasound to CT

Author:

Ramalhinho JoãoORCID,Koo Bongjin,Montaña-Brown Nina,Saeed Shaheer U.,Bonmati Ester,Gurusamy Kurinchi,Pereira Stephen P.,Davidson Brian,Hu Yipeng,Clarkson Matthew J.

Abstract

Abstract Purpose The registration of Laparoscopic Ultrasound (LUS) to CT can enhance the safety of laparoscopic liver surgery by providing the surgeon with awareness on the relative positioning between critical vessels and a tumour. In an effort to provide a translatable solution for this poorly constrained problem, Content-based Image Retrieval (CBIR) based on vessel information has been suggested as a method for obtaining a global coarse registration without using tracking information. However, the performance of these frameworks is limited by the use of non-generalisable handcrafted vessel features. Methods We propose the use of a Deep Hashing (DH) network to directly convert vessel images from both LUS and CT into fixed size hash codes. During training, these codes are learnt from a patient-specific CT scan by supplying the network with triplets of vessel images which include both a registered and a mis-registered pair. Once hash codes have been learnt, they can be used to perform registration with CBIR methods. Results We test a CBIR pipeline on 11 sequences of untracked LUS distributed across 5 clinical cases. Compared to a handcrafted feature approach, our model improves the registration success rate significantly from 48% to 61%, considering a 20 mm error as the threshold for a successful coarse registration. Conclusions We present the first DH framework for interventional multi-modal registration tasks. The presented approach is easily generalisable to other registration problems, does not require annotated data for training, and may promote the translation of these techniques.

Funder

Engineering and Physical Sciences Research Council

Invention for Innovation Programme

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3