DeSmoke-LAP: improved unpaired image-to-image translation for desmoking in laparoscopic surgery

Author:

Pan Yirou,Bano SophiaORCID,Vasconcelos Francisco,Park Hyun,Jeong Taikyeong Ted.,Stoyanov Danail

Abstract

Abstract Purpose Robotic-assisted laparoscopic surgery has become the trend in medicine thanks to its convenience and lower risk of infection against traditional open surgery. However, the visibility during these procedures may severely deteriorate due to electrocauterisation which generates smoke in the operating cavity. This decreased visibility hinders the procedural time and surgical performance. Recent deep learning-based techniques have shown the potential for smoke and glare removal, but few targets laparoscopic videos. Method We propose DeSmoke-LAP, a new method for removing smoke from real robotic laparoscopic hysterectomy videos. The proposed method is based on the unpaired image-to-image cycle-consistent generative adversarial network in which two novel loss functions, namely, inter-channel discrepancies and dark channel prior, are integrated to facilitate smoke removal while maintaining the true semantics and illumination of the scene. Results DeSmoke-LAP is compared with several state-of-the-art desmoking methods qualitatively and quantitatively using referenceless image quality metrics on 10 laparoscopic hysterectomy videos through 5-fold cross-validation. Conclusion DeSmoke-LAP outperformed existing methods and generated smoke-free images without applying ground truths (paired images) and atmospheric scattering model. This shows distinctive achievement in dehazing in surgery, even in scenarios with partial inhomogenenous smoke. Our code and hysterectomy dataset will be made publicly available at https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/desmoke-lap.

Funder

WELCOME/EPSRC

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3