Abstract
Abstract
Purpose
Modern virtual implant planning is a time-consuming procedure, requiring a careful assessment of prosthetic and anatomical factors within a three-dimensional dataset. In order to facilitate the planning process and provide additional information, this study examines a statistical shape model (SSM) to compute the course of dental roots based on a surface scan.
Material and methods
Plaster models of orthognathic patients were scanned and superimposed with three-dimensional data of a cone-beam computer tomography (CBCT). Based on the open-source software “R”, including the packages Morpho, mesheR, Rvcg and RvtkStatismo, an SSM was generated to estimate the tooth axes. The accuracy of the calculated tooth axes was determined using a leave-one-out cross-validation. The deviation of tooth axis prediction in terms of angle or horizontal shift is described with mean and standard deviation. The planning dataset of an implant surgery patient was additionally analyzed using the SSM.
Results
71 datasets were included in this study. The mean angle between the estimated tooth-axis and the actual tooth-axis was 7.5 ± 4.3° in the upper jaw and 6.7 ± 3.8° in the lower jaw. The horizontal deviation between the tooth axis and estimated axis was 1.3 ± 0.8 mm close to the cementoenamel junction, and 0.7 ± 0.5 mm in the apical third of the root. Results for models with one missing tooth did not differ significantly. In the clinical dataset, the SSM could give a reasonable aid for implant positioning.
Conclusions
With the presented SSM, the approximate course of dental roots can be predicted based on a surface scan. There was no difference in predicting the tooth axis of existent or missing teeth. In clinical context, the estimation of tooth axes of missing teeth could serve as a reference for implant positioning. However, a higher number of training data must be achieved to obtain increasing accuracy.
Funder
Universitätsklinikum Freiburg
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献