Improved distinct bone segmentation from upper-body CT using binary-prediction-enhanced multi-class inference.

Author:

Schnider EvaORCID,Huck Antal,Toranelli Mireille,Rauter Georg,Müller-Gerbl Magdalena,Cattin Philippe C.

Abstract

Abstract Purpose: Automated distinct bone segmentation has many applications in planning and navigation tasks. 3D U-Nets have previously been used to segment distinct bones in the upper body, but their performance is not yet optimal. Their most substantial source of error lies not in confusing one bone for another, but in confusing background with bone-tissue. Methods: In this work, we propose binary-prediction-enhanced multi-class (BEM) inference, which takes into account an additional binary background/bone-tissue prediction, to improve the multi-class distinct bone segmentation. We evaluate the method using different ways of obtaining the binary prediction, contrasting a two-stage approach to four networks with two segmentation heads. We perform our experiments on two datasets: An in-house dataset comprising 16 upper-body CT scans with voxelwise labelling into 126 distinct classes, and a public dataset containing 50 synthetic CT scans, with 41 different classes. Results: The most successful network with two segmentation heads achieves a class-median Dice coefficient of 0.85 on cross-validation with the upper-body CT dataset. These results outperform both our previously published 3D U-Net baseline with standard inference, and previously reported results from other groups. On the synthetic dataset, we also obtain improved results when using BEM-inference. Conclusion: Using a binary bone-tissue/background prediction as guidance during inference improves distinct bone segmentation from upper-body CT scans and from the synthetic dataset. The results are robust to multiple ways of obtaining the bone-tissue segmentation and hold for the two-stage approach as well as for networks with two segmentation heads.

Funder

Werner Siemens-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved distinct bone segmentation in upper-body CT through multi-resolution networks;International Journal of Computer Assisted Radiology and Surgery;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3