Shifted-windows transformers for the detection of cerebral aneurysms in microsurgery

Author:

Zhou Jinfan,Muirhead William,Williams Simon C.,Stoyanov DanailORCID,Marcus Hani J.ORCID,Mazomenos Evangelos B.ORCID

Abstract

Abstract Purpose Microsurgical Aneurysm Clipping Surgery (MACS) carries a high risk for intraoperative aneurysm rupture. Automated recognition of instances when the aneurysm is exposed in the surgical video would be a valuable reference point for neuronavigation, indicating phase transitioning and more importantly designating moments of high risk for rupture. This article introduces the MACS dataset containing 16 surgical videos with frame-level expert annotations and proposes a learning methodology for surgical scene understanding identifying video frames with the aneurysm present in the operating microscope’s field-of-view. Methods Despite the dataset imbalance (80% no presence, 20% presence) and developed without explicit annotations, we demonstrate the applicability of Transformer-based deep learning architectures (MACSSwin-T, vidMACSSwin-T) to detect the aneurysm and classify MACS frames accordingly. We evaluate the proposed models in multiple-fold cross-validation experiments with independent sets and in an unseen set of 15 images against 10 human experts (neurosurgeons). Results Average (across folds) accuracy of 80.8% (range 78.5–82.4%) and 87.1% (range 85.1–91.3%) is obtained for the image- and video-level approach, respectively, demonstrating that the models effectively learn the classification task. Qualitative evaluation of the models’ class activation maps shows these to be localized on the aneurysm’s actual location. Depending on the decision threshold, MACSWin-T achieves 66.7–86.7% accuracy in the unseen images, compared to 82% of human raters, with moderate to strong correlation. Conclusions Proposed architectures show robust performance and with an adjusted threshold promoting detection of the underrepresented (aneurysm presence) class, comparable to human expert accuracy. Our work represents the first step towards landmark detection in MACS with the aim to inform surgical teams to attend to high-risk moments, taking precautionary measures to avoid rupturing.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

National Institute for Health and Care Research

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3