Author:
Angioletti-Uberti Stefano
Abstract
AbstractSingle-molecule pulling experiments are widely used to extract both thermodynamic and kinetic data on ligand-receptor pairs, typically by fitting different models to the probability distribution of rupture forces of the corresponding bond. Here, a theoretical model is presented that shows how a measurement of the number of binding and unbinding events as a function of the observation time can also give access to both the binding (kon) and the unbinding (koff) rates of bonds, which combined provide a well-defined bond free-energy ΔGbond. The connection between ΔGbond and the ligand-receptor binding constant measured by typical binding essays is critically discussed. The role played by the molecular construct used to tether ligands and receptors to a surface is considered, highlighting the various approximations necessary to derive general expressions that connect its structure to its contribution, termed ΔGcnf, to the bond free-energy. In this way, the validity and the assumptions underpinning widely employed formulas and experimental protocols used to extract binding constants from single-molecule experiments are assessed. Finally, the role of ΔGcnf in processes mediated by ligand-receptor binding is briefly considered, and an experiment to unambiguously measure this quantity proposed.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry