Homogeneous nucleation in polyamide 66, a two-stage process as revealed by combined nanocalorimetry and IR spectroscopy

Author:

Kipnusu Wycliffe Kiprop,Zhuravlev Evgeny,Schick Christoph,Kremer Friedrich

Abstract

AbstractNanocalorimetry and Fourier transform infrared (FTIR) spectroscopy are combined to measure the calorimetric properties and molecular spectra of the same sample (sample amount about 5 ng) of polyamide 66 (PA66). By determining IR difference absorption spectra between a quenched and a sample annealed at varying temperatures (Ta) and annealing time (ta), the initial steps of homogeneous nucleation is for the first time revealed on a molecular scale, long before crystallization takes place. As starting point (i), isolated H-bonds are formed between (N–H) and (C = O) moieties of adjacent (neighboring) polymer segments promoted by far-reaching dipole–dipole interactions. In the second step (ii), the H-bonds realign, which in part requires the opening of already established H-bonds. In stage (i), the FTIR absorption intensity of the free (C = O)f moieties decreases while that of the H-bonded (C = O)b ones increases as a function of Ta at constant ta. This implies an increase in the H-bonding network in amorphous domains. The second stage of nucleation in the studied PA66 is characterized by an increase in the number of (C = O)f and a corresponding decrease in (C = O)b moieties as the sample transitions to the ordered crystalline structure. This is attributed to a change from γ to α polymorphs in PA66. The non-polar methylene units in PA66 are largely unaffected during the nucleation steps, where no changes in the overall heat capacity are detectable, proving that these changes occur prior to the onset of crystal growth. Graphical abstract

Funder

collaborative research center

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3