Adsorption process for phospholipids of different chain lengths at a fluorocarbon/water interface studied by Du Noüy ring and spinning drop

Author:

Ullmann Kirsten,Poggemann Lukas,Nirschl Hermann,Leneweit Gero

Abstract

AbstractFluorocarbons are novel systems in the fast-growing fields of diverse biomedical applications and fluorocarbon-water emulsions. However, characterization of these systems with modern measuring techniques such as drop profile analysis tensiometry is almost impossible because of practically identical refractive indexes and high-density differences. Due to the material properties of the fluorocarbon-water system, the invasive Du Noüy ring is the most appropriate method to measure interfacial tensions over long times. However, the influence of the ring on a fluorocarbon/water interface packed with phospholipids needs careful analysis. For the proof of methodology, the spinning drop tensiometry was used for comparison as a non-invasive technique to measure interfacial tension between water and perfluoroperhydrophenanthrene (PFPH) covered by 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) proving almost identical results. This demonstrates the validity of the invasive measurement technique for the studied system. The Du Noüy ring method was applied for further measurements of phospholipids with different chain lengths (1,2-dmyristoyl-sn-glycero-3-phostphatidylcholine, DMPC; 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, DSPC) which revealed a difference in interfacial adsorption kinetics and equilibrium tensions. The Du Noüy ring tensiometry is appropriate to examine the slow adsorption kinetics of phospholipids emulsifying fluorocarbons. The results enable functional optimization of fluorocarbon emulsions regarding physical emulsification parameters and the selection of lipids.

Funder

Phospholipid Research Center

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3