Individual tubular J-aggregates stabilized and stiffened by silica encapsulation

Author:

Herman Katherine,Kirmse Holm,Eljarrat Alberto,Koch Christoph T.,Kirstein Stefan,Rabe Jürgen P.

Abstract

AbstractAmphiphilic cyanine dyes in aqueous solution self-assemble into J-aggregates with diverse structures. In particular, the dye 3,3′-bis(3-sulfopropyl)-5,5′,6,6′-tetrachloro-1,1′-dioctylbenzimida-carbo-cyanine (C8S3) forms micrometer long double walled tubular J-aggregates with a uniform outer diameter of 13 ± 0.5 nm. Interestingly, these J-aggregates exhibit strong exciton delocalization and migration, similar to natural light harvesting systems. However, their structural integrity and hence their optical properties are very sensitive to their chemical environment as well as to mechanical deformation, rendering detailed studies on individual tubular J-aggregates difficult. We addressed this issue and examined a previously published route for their chemical and mechanical stabilization by in situ synthesis of a silica coating that leaves their absorbance and emission unaltered in solution. Here, we demonstrate that the silica shell with a thickness of a few nanometers is able to stabilize the tubular J-aggregates of C8S3 against changes of pH of solutions down to values where pure aggregates are oxidized, against drying under ambient conditions, and even against the vacuum conditions within an electron microscope. Dried silica–covered aggregates are brittle, as demonstrated by manipulation with a scanning force microscope on a surface. Transmission electron microscope images confirm that the thickness of the coatings is homogeneous and uniform with a thickness of less than 5 nm; scanning TEM energy dispersive X-ray spectroscopy confirms the chemical composition of the shell as SiO2; and electron energy loss spectra could be recorded across a single freely suspended aggregate. Such a silica shell may not only serve for stabilization but also could be the base for further functionalization of the aggregates by either chemical attachment of other units on top of the shell or by inclusion during the synthesis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3