Coexistence of DOPG model membranes and $$\beta$$-aescin micelles: a combined scattering and NMR study

Author:

Gräbitz-Bräuer Friederike,Dargel Carina,Geisler Ramsia,Fandrich Pascal,Sabadasch Viktor,Porcar Lionel,Mix Andreas,Hellweg Thomas

Abstract

AbstractThe saponin $$\beta$$ β -aescin is well known for its self-aggregation above the critical micelle concentration (cmc) and its interaction with model membranes made of zwitterionic phospholipids including the formation of mixed bicelle systems. In this study, we investigate the interaction of $$\beta$$ β -aescin with small unilamellar vesicles (SUVs) made of the negatively charged lipid 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG). The study is conducted at a pH value at which aescin is negatively charged as well, and mixtures up to an aescin content of 50 mol% (equivalent to a molecular ratio of 1:1) were investigated, so that the cmc of aescin is exceeded by far. Analysis of the system by scattering and NMR methods was performed with respect to two reference systems made of the bare components: DOPG SUVs and aescin micelles. Wide-angle X-ray scattering (WAXS) was used to determine molecular correlation distances for both kinds of molecules, and small-angle neutron and X-ray scattering (SANS and SAXS) revealed a structural picture of the system, which was further confirmed by diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR). Contrary to the expected solubilization of the DOPG membrane, most probably none- or only weakly-interacting, separated DOPG SUVs and aescin micelles were found. The study additionally highlights the importance of using independent methods to characterize a rather complex colloidal system in order to obtain a complete picture of the structures formed.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3