Hypo-Hydroxymethylation of Nobox is Associated with Ovarian Dysfunction in Rat Offspring Exposed to Prenatal Hypoxia

Author:

Yao Changfang,Lu Likui,Ji Yiting,Zhang Yingying,Li Weisheng,Shi Yajun,Liu Jinliu,Sun Miao,Xia FeiORCID

Abstract

AbstractPrenatal hypoxia (PH) is a common feature of a suboptimal intrauterine environment affecting the development of fetuses. Whether PH leads to abnormal ovary development is not yet clear. This study investigated ovarian function in offspring exposed to PH and the potential underlying molecular mechanisms. SD female rats (n = 12 per group) at 9 weeks of age were housed in individual cages (21% O2). After the pregnant rats were exposed to hypoxia (10.5% oxygen) from embryonic day (E) 5 to E21, PH offspring were generated. All animals maintained normoxia during lactation. The number of follicles was counted in female offspring at 3 months under an optical microscope. The expression of Nobox, Gdf9, and Tets was detected by quantitative real-time polymerase chain reaction (PCR) and Western blot. Global DNA hydroxymethylation was measured by dot blot. The hydroxymethylation level of the Nobox gene was evaluated with an NGS-based multiple targeted CpG hydroxymethylation analysis method. Body weight and ovary weight were significantly decreased in the PH group compared with the control group. PH offspring have abnormal estrous cycle, decreased serum anti-Mullerian hormone (AMH), and increased serum follicle-stimulating hormone (FSH), and follicular atresia, which are consistent with the clinical manifestations in patients with ovarian dysfunction. In terms of mechanism, the expression of Nobox was significantly decreased in the PH group. Subsequent high-throughput sequencing results showed that the level of hydroxymethylation in the candidate region of the Nobox gene was reduced. Cultured cells treated with hypoxia exhibited lower levels of both 5hmC and Nobox, while vitamin C, a coactivator of Tets, rescued hypo-hydroxymethylation and increased the expression level of Nobox. This study indicated that PH could cause hypo-hydroxymethylation of Nobox through epigenetic regulation and may consequently contribute to ovarian dysfunction in adult rat offspring.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3