Author:
Floreanini Roberto,Spiridonov Vyacheslav P.,Vinet Luc
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference18 articles.
1. Drinfel'd, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians. Vol. 1, pp. 798–820. New York: Berkeley 1986 (The American Mathematical Society, 1987)
2. Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985); Aq-analogue ofU(gl(N+1)); Hecke algebra and the Yang-Baxter equation. ibid. Lett. Math. Phys.11, 247–252 (1986)
3. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys.111, 613–665 (1987)
4. Faddeev, L.D., Reshetikhin, N.Yu., Takhatajan, L.A.: Quantization of Lie groups and Lie algebras. In: Algebraic analysis, Vol. 1, 129. New York: Academic Press 1988
5. Manin, Yu.I.: Quantum groups and non-commutative geometry. Montréal: Centre de Recherches Mathematiques, 1988
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differential operator realization of braid group action on ıquantum groups;Journal of Mathematical Physics;2023-10-01
2. The q-analogue of the Higgs algebra;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2021-12-27
3. The double scaled limit of super-symmetric SYK models;Journal of High Energy Physics;2020-12
4. Finite temperature behaviors of q-deformed Fermi gases;Modern Physics Letters B;2019-08-30
5. The q-Higgs and Askey–Wilson algebras;Nuclear Physics B;2019-07