Publisher
Springer Science and Business Media LLC
Reference5 articles.
1. R. Kh. Vakhitov, “Alternative ideals in weakly alternative rings,”Algebra Logica,32, No. 2 (1993).
2. D. Outcalt, “An extension of the class of alternative rings,”Can. J. Math.,17, No. 1, 130–141 (1965).
3. N. Sterling, “Rings satisfying(s, y. z.)=(y, z, x),”Can. J. Math.,20, No. 4, 913–918 (1968).
4. E. Kleinfeld and L. Widmer, “Rings satisfying(x, y, z)=(y, z, x),”Commun. Algebra,17, No. 11, 2683–2687 (1989).
5. N. Jacobson, “Structure of alternative and Jordan bimodules,”Osaka J. Math., No. 1, 1–11 (1954).