Evaluation of Potential DNA-Damaging Effects of Nitenpyram and Imidacloprid in Human U937-Cells Using a New Statistical Approach to Analyse Comet Data

Author:

Bivehed ErikORCID,Gustafsson Anton,Berglund Anders,Hellman BjörnORCID

Abstract

AbstractEven if the two neonicotinoids nitenpyram and imidacloprid have been considered safe for humans, their potential genotoxicity still remains a matter of discussion. The DNA-damaging effects of these two compounds were therefore evaluated in a lymphoma cell line of human origin (U-937) using the comet assay after 3-h exposure to up to 50 μM, with or without metabolic activation using S9 from human liver. The comet data were analysed using a traditional one-way ANOVA after pooling the data on cellular level, and a new alternative approach we have called Uppsala Comet Data Analysis Strategy (UCDAS). UCDAS is a proportional odds model tailored to continuous outcomes, taking the number of pooled cultures, slides and cells into consideration in the same analysis. To the best of our knowledge, the UCDAS approach when analysing comet data has never been presented before. Without metabolic activation, no increase in DNA damage was observed in the neonicotinoide-exposed cells. Nitenpyram was also without DNA-damaging effects when S9 was added. However, in the presence of S9, imidacloprid was found to increase the level of DNA damage. Whereas the ANOVA showed an increase (P < 0.001) both at 5 and 50 μM, UCDAS showed an increase only at the lowest concentration (P < 0.001). Based on these findings, the two neonicotinoids seem to be of little concern when it comes to their potential genotoxicity. However, since the U-937 cells were rather resistant to our positive controls, they may not be the best cells to use when evaluating potential genotoxicity of chemicals.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3