A grammatical evolution approach to the automatic inference of P systems

Author:

Nadizar Giorgia,Pietropolli Gloria

Abstract

AbstractP systems are a bio-inspired framework for defining parallel models of computation. Despite their relevance for both theoretical and application scenarios, the design and the identification of P systems remain tedious and demanding tasks, requiring considerable time and expertise. In this work, we try to address these problems by proposing an automated methodology based on grammatical evolution (GE)—an evolutionary computation technique—which does not require any domain knowledge. We consider a setting where observations of successive configurations of a P system are available, and we rely on GE for automatically inferring the P system, i.e., its ruleset. Such approach directly addresses the identification problem, but it can also be employed for automated design, requiring the designer to simply express the configurations of the P system rather than its full ruleset. We assess the practicability of the proposed method on six problems of various difficulties and evaluate its behavior in terms of inference capability and time consumption. Experimental results confirm our approach is a viable strategy for small problem sizes, where it achieves perfect inference in a few seconds without any human intervention. Moreover, we also obtain promising results for larger problem sizes in a human-aided context, paving the way for fully or partially automated design of P systems.

Funder

Università degli Studi di Trieste

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Model-based Test Case Generation for GP Agents;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

2. Implementing perceptrons by means of water-based computing;Journal of Membrane Computing;2024-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3