Abstract
Abstract
We report (1) successful extraction and characterization of cellulose from northern hemisphere green macroalgae Ulva lactuca (Ulva fenestrata) collected along the Swedish west coast and cultivated indoors under controlled conditions, followed by (2) its utilization in the production of lignin-free cellulose nanofibrils (CNF). Cellulose was extracted by sequential treatment with ethanol, hydrogen peroxide, sodium hydroxide, and hydrochloric acid, yielding a cellulose-rich insoluble fraction. The extracted cellulose was disintegrated into CNF using a mechanical homogenization process without any further enzymatic pre-treatments. In addition, regenerated cellulose was prepared. XRD characterization of the CNF showed characteristic peaks for the cellulose I allomorph and confirmed that the nanofibrils were semicrystalline with a crystallinity index of 48%. Regenerated cellulose was mostly amorphous with an XRD pattern indicating the presence of the cellulose II allomorph. The cellulose fractions were essentially free from inorganic substances and thermally stable up to around 260 °C. Structural mapping with CP-MAS 13C-NMR sustains the cellulose content of CNF and regenerated cellulose, respectively, yet ion chromatography identified the presence of 10–15% xylose in the fractions. Optotracing was used as a novel and non-disruptive tool to selectively assess the polysaccharide composition of the cellulose fractions and produced CNF aiming to shed light on this hitherto non-resolved origin of xylose in Ulva cell wall matter. Fluorescence excitation and emission spectra of a panel of 4 oligothiophenes identified and verified the presence of cellulose and sustain the conclusion that the isolated fractions consist of cellulose intertwined with a small amount of a xylose-containing glucan copolymer.
Graphic abstract
Funder
Stiftelsen för Strategisk Forskning
Erling-Persson Family Foundation
Getinge AB
Publisher
Springer Science and Business Media LLC
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献