Abstract
AbstractThis paper discusses the effect of hydrolytic pretreatments on pulp dissolution in the aqueous NaOH–ZnO solvent system. Eight samples were studied. They consisted of a never-dried softwood kraft pulp that was hydrolyzed under seven different conditions as well as the pulp without hydrolysis as a reference. The dissolution of the pulps was evaluated both at the macro level as well as at the molecular level based on their reactivity with 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxo-piperidium (4-AcNH-TEMPO+). The fiber properties (i.e. the extent of fibrillation, amount of fines and fiber width, coarseness, and length) as well as the chemical composition (hemicellulose and cellulose contents) and the viscosity of the pulps was investigated. The results show that hydrolysis at medium consistency (10%) was successful in increasing the solubility of cellulose. Hydrolysis at high consistency (50%), on the other hand, increased the solubility only to some extent. With extended treatment time the fibers formed aggregates and their dissolution became poor. This phenomenon could be overcome by mechanically refining the fibers after the hydrolysis. Moreover, comparison of the viscosity of the pulp over the degree of oxidation revealed that the viscosity needed to decrease below ca. 400 ml/g in order for the outer layers of the fibers to dissolve. Finally, when pulps with similar viscosities where compared against each other, the ones with the higher glucomannan contents formed gels over time. This was true also for the pulp with the lowest viscosity and the highest solubility of the studied samples.
Funder
UPM-Kymmene Oyj
Walter Ahlströmin Säätiö
FinnCERES Materials Bioeconomy Ecosystem
Business Finland
Aalto University
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献