Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites

Author:

Hasan K. M. FaridulORCID,Horváth Péter György,Bak Miklós,Le Duong Hung Anh,Mucsi Zsuzsanna Mária,Alpár Tibor

Abstract

AbstractHerein, natural fiber (energy reeds and rice straw) reinforced with phenol formaldehyde (PF) polymeric resin biocomposites are developed and reported in this study. The dimensions of energy reeds and rice straws used for this research were 0.5–1.66 mm and 0.1–3.55 mm, respectively. The hot-pressing technology was used for manufacturing the biocomposites. The proportions for mixing of rice straw/energy reed fibers in composite systems were 90/0, 54/36, 36/54, and 0/90 whereas remaining 10% were belong to PF resin. The nominal densities of the biocomposite panels were 680 kg/m3, however the actual densities were 713.655, 725, 742.79, and 764.49 kg/m3. The main objective of this study is to develop hybrid biocomposites from different proportions of energy reeds and rice straw fibers using PF resin and to find the convenient ratio and materials for biocomposites production. The obtained results demonstrate that mechanical properties and stability against the moisture increases with the increase of energy reeds loading in the composite systems. The biocomposite developed from 100% energy reeds provided the higher mechanical properties compared to 100% rice straw. The thermal and morphological properties of the produced biocomposite materials were investigated and found significant. The thermo-mechanical properties of the composite materials increase with the increase in energy reed fiber loading in composite system. Furthermore, the coefficient of variation (R2) also demonstrates a positive attributions of energy reed fibers loading in composite systems. Moreover, the overall performances of the developed biocomposite panels demonstrate them as potential and novel candidate to the composite community in the coming times. Graphical abstract

Funder

University of Sopron

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3