Full ultraviolet shielding potency of highly durable cotton via self- implantation of palladium nanoclusters

Author:

Emam Hossam E.ORCID,Zaghloul Saad,Ahmed Hanan B.

Abstract

AbstractUnique technique is currently demonstrated for preparation of ultraviolet protective cotton fabrics with full shielding effect, via self-implantation of palladium (Pd) nanoclusters. Palladium nanoclusters were in-situ immobilized within native and cationized cotton using two different concentrations of palladium precursor (20 and 60 mM) under strong acidic (pH 2) and basic (pH 11.5) media. Cationization (50 and 100%) of cotton fabrics was performed in order to increase the accessibility of fabric for controllable implantation of palladium nanoclusters. Size distribution of palladium nanoclusters in supernatant solution was estimated via Transmission electron microscopy to be 3.2 nm. The estimated data showed that the sample prepared with the highest cationization percent and highest concentration of palladium precursor in strong alkaline medium exhibited the highest yellowness index, color strength and excellent ultraviolet shielding effects. The yellowness index was significantly increased from 15.67 for cationized cotton to 74.99 for the sample prepared with the highest cationization percent and highest concentration of Pd+2 in alkaline medium (Pd-CC (100)4). Tensile strength was insignificantly decreased from 93.2 MPa for cationized cotton to 84.5 MPa for Pd-CC (100)4. Ultraviolet shielding effect was superiorly enhanced with implantation of palladium nanoclusters. The UV protection factor (UPF) was excellency increased from 1.3 (insufficient) for native cotton to 256.6 (excellent) for Pd-CC (100)4. The effect of repetitive washing cycles on the colorimetric data and the results of ultraviolet protection was also studied to affirm the effect of fabric cationization in preparation of highly durable UV-protective fabrics. Graphical abstract

Funder

National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3